發(fā)光二極管(LED)在各種終端設備中已經(jīng)被廣泛使用,從汽車前照燈、交通信號燈、文字顯示器、廣告牌及大屏幕視頻顯示器,到普通及建筑照明和LCD背光等應用,LED的迅速采用使得zui普通的設備也需要重新設計。隨著LED效率與亮度的增加以及成本的減少,LED有可能會取代消費類應用中的傳統(tǒng)照明技術。本文通過比較采用基于LED的LCD背光的大屏幕顯示器中所使用的一些技術,闡述如何解決在使用LED時所面對的一些設計挑戰(zhàn)。 體育場或廣告顯示牌使用了很多顯示面板及成千上萬個LED。在每一顯示陣列中,各LED(也稱為像素)的亮度會有很大的差異,zui亮和zui暗LED之間的亮度差有時甚至能高達15%~20%。盡管此問題是所有LED應用的通病,但在一些要求有像素一致性的高質(zhì)量顯示系統(tǒng)中顯得尤為突出。為彌補這種差異,廠商通常采用兩種辦法:一是從供應商處購買經(jīng)過匹配的或經(jīng)過篩選的LED;二是采用帶有“點校正”功能的高質(zhì)量LED驅(qū)動器。 LED供應商提供經(jīng)過匹配的LED并收取一定的額外費用。他們測試后再將這些RGB(紅、綠、藍)發(fā)光二極管與可在規(guī)定電流上產(chǎn)生相似亮度的LED組合在一起。利用這種方法雖可以zui少的設計工作量來為低端照明系統(tǒng)提供所需的亮度一致性,但每個像素隨時間的衰落速度或亮度下降速度各不相同,因而這種方法只能是一種暫時的解決方案。換言之,在今后一到兩年內(nèi),各像素的亮度將無法再保持一致。另外,當需要更換有缺陷的面板時,新?lián)Q上的面板的亮度在視覺上也會和其他面板有差異。 顯示系統(tǒng)對亮度匹配的要求很高,因此僅采用LED匹配這種方法還遠遠不夠。為在顯示單元的整個壽命周期內(nèi)獲得像素與面板亮度的一致性,廠商們普遍采用帶有點校正功能的LED驅(qū)動器。點校正是一種通過調(diào)整流入陣列中每個LED的電流來控制像素亮度的方法。利用點校正功能,處理器可以控制流入LED面板的所有電流,同時LED驅(qū)動器可調(diào)整供給每個LED的電流并產(chǎn)生一致的亮度。因此就不再需要查找表,也不需要LED在每個刷新周期的復雜倍乘任務,處理器可以把節(jié)省下來的資源用來執(zhí)行其他任務。為實現(xiàn)點校正,廠商通過照相來測量每個LED的亮度。系統(tǒng)中zui暗的LED被為基本LED,而其他所有像素均與其進行比較。為進行這種校正,供給每個像素的電流都乘以一個和LED光強成正比的小數(shù)(或分數(shù))。在像TI TLC5940中,每個LED的點校正值在每個刷新周期內(nèi)都可以有很大的不同,并能存儲在集成EEPROM中。這種“雙點校正”方法可提供讓整個面板亮度隨外部照明條件的改變而更新的靈活性,并能提供長期及非易失性的點校正信息,來確保面板亮度的一致性。亮度指標會隨時間而改變,EEPROM中的數(shù)據(jù)可以進行重新校正,若面板出現(xiàn)故障要求更換,EEPROM中的數(shù)據(jù)也可以進行重寫。下面用一個具體例子來闡述這種方法。 為簡單起見,只考慮由多個面板及數(shù)千個LED像素組成的完整顯示系統(tǒng)中一種顏色的16個LED。視頻面板中綠像素的亮度指標可能要求該像素的綠色LED具有80mcd的亮度。所選LED(Osram LP E675)按亮度分成四個組:45~56mcd、56~71mcd、71~90mcd及90~112mcd。每組亮度均在50mA的電流上測量。選擇亮度zui高的組并保證其每個LED均具有至少80mcd的亮度。對于像TLC5940這樣的芯片,可用一個電阻來設置每片IC的zui大電流,使每片IC都能驅(qū)動16個LED。該電阻值必須能將電流設置成足夠高,以使zui暗的LED也能產(chǎn)生80mcd的亮度。因此,根據(jù)LP E675的數(shù)據(jù)資料,芯片必須有43mA的驅(qū)動電流才能產(chǎn)生80mcd的亮度。通過在安裝位置上測量LED的滿電流(43mA)亮度,即可得到如圖1所示的LED亮度直方圖。其中x軸為以mA表示的LED電流,而y軸則為以mcd表示的LED亮度。如圖1所示,在未進行點校正前,所測得的面板中每個LED之間的亮度差可高達±10%。這樣大的亮度差在顯示器中是無法接受的。直方圖給出了對每個LED進行調(diào)整或進行點校正以產(chǎn)生一致亮度的相應數(shù)據(jù)。例如,當對滿亮度編程后,IC必須將LED1的亮度從83mcd校正為80mcd。TLC5940擁有6位的點校正(即64步)步進,對應于每步1.56%的滿量程分辨率。 圖1 點校正前的 LED亮度與正向電流直方圖 圖2 點校正后的LED亮度與正向電流直方圖 用下式可計算出每個LED的點校正值。 其中DCproduction為生產(chǎn)時所需的點校正值,Lbaseline為所需的亮度水平,而Linitial則是在zui大電流上測得的亮度。 先將計算得到的點校正值四舍五入為zui接近的小數(shù),然后再將原始亮度乘以新的點校正系數(shù),即得到更新后的LED亮度值。 在計算并存儲每個LED的點校正數(shù)據(jù)后,即可將LED驅(qū)動器編程為其zui大電流,以使LED驅(qū)動器自動調(diào)整供給每個LED的電流,這便產(chǎn)生了如圖2所示的直方圖。如果將點校正數(shù)據(jù)編程至TLC5940芯片的EEPROM中,則當面板每次開機時即可加載點校正數(shù)據(jù),而且會一直保留至面板下一次被再校準為止。 對于室內(nèi)或室外工業(yè)用視頻顯示器,例如廣告牌及大屏幕顯示器等,光有靜態(tài)調(diào)整(即校準后保持不變,直到手動調(diào)整為止)還不夠。這種面板調(diào)整是顯示器日常維護程序中的一部分。而新興市場應用則對此提出了更大的挑戰(zhàn)。隨著該技術進入到消費電子產(chǎn)品及家庭中,又如何來控制并調(diào)整LED隨時間的改變呢? 盡管這種發(fā)展仍處于初級階段,但現(xiàn)在已有一些顯示器采用了此項技術。索尼40英寸Qualia 005面板及三星46英寸的LNR460D面板,均推出了采用基于LED背光的LCD電視。與流行想法相悖的是,這兩種電視顯示器中的二極管并不“白”,而是通過控制及混合RGB LED來產(chǎn)生“可調(diào)的”白光。與傳統(tǒng)燈泡相比,LED背光擁有很多優(yōu)勢:更高的功率效率、更少的運動畫面拖影、更寬的色彩頻譜(在某些情況下大于105% NTSC)、更長的使用壽命及可調(diào)的色溫等,其畫面質(zhì)量非常高。盡管在亮度變化方面電視機工程師遇到了和傳統(tǒng)面板制造者一樣的挑戰(zhàn),他們還必須著重考慮溫度變化問題,因為電視背光應用對LED亮度隨溫度變化的改變很敏感。此外,電視機僅當其背光性質(zhì)被調(diào)整為滿足每位消費者起居室各不相同的環(huán)境照明條件時,才能達到其*顯示質(zhì)量。再加上消費應用的特點,便向人們提出了對動態(tài)亮度調(diào)整的需求。 為創(chuàng)造這種動態(tài)調(diào)整環(huán)路,需要使用幾個測量LED溫度及亮度變化的內(nèi)部傳感器,以及測量環(huán)境條件改變的外部傳感器。以其zui基本的形式,控制環(huán)路以這些傳感器采集數(shù)據(jù),并將這些數(shù)據(jù)輸入至處理器中開始,然后處理器再對這些數(shù)據(jù)進行評估,并向TLC5940等LED驅(qū)動器芯片提供智能校正功能。此外,處理器還通過結(jié)合原始工廠校準點校正值與新的動態(tài)數(shù)據(jù)來產(chǎn)生更新后的點校正數(shù)據(jù)。 還用前面的示例,假如環(huán)境亮度表測得僅需70%的滿亮度或56mcd的環(huán)境照明條件,則處理器會算出新的44.8的環(huán)境光點校正值。如果由于溫度上升而使LED亮度下降10%,則處理器會計算71.1的溫度點校正值。結(jié)合所有這三種點校正值來產(chǎn)生新的點校正數(shù)據(jù),即可對這三種亮度變化進行補償。 從上可見,運用48的組合點校正值即可得到56mcd的期望亮度。請注意,由于溫度引起亮度下降,故本計算中的起始電流被設置為起始生產(chǎn)電流的90%。 只有可提供并能組合運用動、靜態(tài)點校正方法的LED驅(qū)動器,才能提供針對消費者特定觀看條件的*背光解決方案。在由索尼及三星提供的原型電視機中,LED采用串聯(lián)方式減少控制單個LED的所需資源。要設計對背光顯示單元的全動態(tài)控制,需對單個LED進行控制。因此,LED廠商目前正在開發(fā)可實現(xiàn)更靈活陣列配置的先進技術。 用于電視機的智能背光,是下一項將應用到家庭的創(chuàng)新技術,將使電視機的畫面質(zhì)量大幅度提高,改善人們在使用中的視覺體驗。 |